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Additive manufacturing of ceramics: challenges

Conventional powder-based approaches

• fine ceramic powders to be dispersed in 

aqueous and non-aqueous slurries

• high viscosity even with a limited 

amount of powder (~40%vol)

• green bodies with adequate strength

• significant amount of organic binders

• delicate debinding processes and 

limited wall thickness and volume

• particle size limits the resolution, feature 

size and surface quality

• light scattering limits the resolution and 

penetration depth (DLP, SLA)

Liquid feedstock 

• liquid systems exploit the more advanced 

stage of development of AM technologies 

for polymers

• densification occurs at lower temperatures 

and generally results in denser bodies

• stronger and more reliable parts

• unique maaaaaterial properties retained 

(i.e. glass transparency)

• not suitable for all AM technologies

(BJ, SLS/SLM, DED)
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• chemical versatility

• high homogeneity of the final product

• material design by assembling molecular building blocks

• fine tuning of the material properties

• preventing clogging of the tip during extrusion-based 

processes

• control on reactivity by tailoring synthesis parameters: 

temperature, pH, catalyst system, precursor:solvent ratio

multicomponent 
glass

TiC/C

Sol-gel compositions for AM processes



DLP of hierarchically porous carbide/carbon nanocomposite
• note: carbide powder-based suspensions produce light adsorption and scattering

→ hindered photopolymerization and penetration depth

• application: targets for isotope on-line separation (ISOL) facilities

→ nuclear physics and radiopharmaceutical applications
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Highly microporous TiC/C nanocomposite

Zanini A. et al., Microporous and Mesoporous Materials 2022, 337, 111917

• metal and carbon precursors + carbothermal reduction → highly porous carbide

• overstoichiometric carbon content: TiO2 + 5C → TiC + 2C + 2CO

→ excess C = turbostratic structure

→ thin sheets at the grain boundaries of TiC nanocrystals (22 nm)

• total porosity: 64% (97% of which open)

• SSA (BET): 655 m2/g, micropores fraction: 84%



Photocurable ink for AM of TiC/C nanocomposite
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→ physical blend of the sol and a photocurable acrylate (PEGDA) to promote fixation

by photopolymerization reactions

→ formation of 2 separate, interpenetrating networks (sol-gel and photopolymerization-derived)

A. Zanini et.al., ACS Appl. Mater. Interfaces 16, 51 (2024) 70828–70838
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DLP of structured hierarchically porous TiC/C nanocomposite

weight loss [%] 91.1 ± 0.7

xy shrinkage [%] 56.7 ± 0.1

z shrinkage [%] 56.7 ± 0.1

volumetric shrinkage [%] 91.9 ± 0.1

• crack-free samples upon sintering at

1750°C

• dense struts and no residual porosity

• homogeneous shrinkage along x-y 

and z direction

A. Zanini et.al., ACS Appl. Mater. Interfaces 16, 51 (2024) 70828–70838
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• volumetric shrinkage of photopolymer upon photopolymerization

→ textural changes in the final material SSA (BET): 149 m2/g

DLP of structured hierarchically porous TiC/C nanocomposite

→ control over the local arrangement of the molecular building blocks:

▪ EISA (evaporation induced self-assembly)

▪ supercritical drying

▪ cooperative EISA + supercritical drying
A. Zanini et.al., ACS Appl. Mater. Interfaces 16, 51 (2024) 70828–70838
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• overstoichiometric carbon content: Ti ∶ C = 1 ∶ 5

→ TiC nanocrystallites (13 nm)

→ nanocrystalline graphite (7 nm) with turbostratic stucture

• textural control and design of bimodal porosity:

▪ aerogel route → mesopores > micropores

▪ xerogel route → mesopores < micropores

DLP of structured hierarchically porous TiC/C nanocomposite

fabrication route SSABET [cm3/g] Vmicro [%]

xerogel 149 71

xerogel + EISA 328 57

aerogel 391 21

aerogel + EISA 403 18

A. Zanini et.al., ACS Appl. Mater. Interfaces 16, 51 (2024) 70828–70838
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• stoichiometric carbon content:

Si ∶ C = 1 ∶ 1

→ TEOS + sucrose (~ TiC)

→ other hybrid Si-C 

precursors

• thermal treatment @ 1500°C 

for 10h in high vacuum

Current research: nanostructured SiC

Precursors
SSABET 

[cm3/g]

Crystallite size

[nm]

TEOS + sucrose 42 27

other 372 26



DLP and UV-DIW of dense multicomponent glass
• high transmittance

• compositional versatility

→ tuning of refractive index and other optical properties

• application: jewelry, optics
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Patent pending (Swarovski) - PCT/EP2024/051082

A. Zanini et.al., Additive manufacturing of multicomponent glasses with enhanced optical properties via sol-gel, Additive Manufacturing 109 (2025), 104864

Photocurable sol-gel formulations for multicomponent glass

• Si precursors: alcoxides

▪ hydrolizable groups: 

hydrolysis/condensation

▪ non-hydrolizable groups: chain flexibility

▪ acrylate groups: photopolymerization

(interconnected networks)

• Transition metal precursors: alcoxides

▪ Zr, Ti to increase the refractive index

• Non-hydrolizable acrylate monomer:

partial decoupling of the two networks to turn 

material rigidity and response to stresses

• High boiling point solvent:

transient porosity to favor binder burnout



• precursors: SiO2, ZrO2 and TiO2

• acid catalysis

• Si-alkoxide-acrylate 

+ organic acrylate

• sintering T: 1000°C

DLP of high refractive index glass
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nd: ~1.55 to ~1.57

transmittance@405 nm: 

~90.5 to 98.8%

density: ~2.55 to 2.72 g/cm3

Abbe number: νd ~41.3 to 60.4

Patent pending (Swarovski) - PCT/EP2024/051082

A. Zanini et.al., Additive manufacturing of multicomponent glasses with enhanced optical properties via sol-gel, Additive Manufacturing 109 (2025), 104864



Hybrid UV-DIW technology

Hybrid additive manufacturing technology as a combination between Direct-Ink Writing (DIW) 

and UV photo-polymerization

Vat photo-polymerization

✓ Fast printing

x Ink preparation
✓ High resolution

x Light scattering

Direct Ink Writing

Cured

Un-cured

✓ High resolution

✓ No light scattering

✓ Fast printing

✓ Free-forming structures
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Final design

A. De Marzi et al., Additive Manufacturing 54 (2022), 102727.



UV-DIW of high refractive index glass
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• precursors: SiO2, ZrO2 and TiO2

• acid catalysis

• Si-alkoxide-acrylate

• addition of bulk coloring pigments

• solvent evaporation step: tune ink viscosity

• sintering T: 1000°C

→ colored glass

Patent pending (Swarovski) - PCT/EP2024/051082

A. Zanini et.al., Additive manufacturing of multicomponent glasses with enhanced optical properties via sol-gel, Additive Manufacturing 109 (2025), 104864



Summary and conclusions

• AM of sol-gel compositions demonstrates the potential of liquid feedstock for a facile 

production of porous and dense ceramic components:

▪ sols can be rendered photocurable and exploited for DLP as well as

other photopolymerization-based AM technologies

▪ gel formation develops rheological properties suitable for DIW

→ hybrid UV-DIW technology

▪ generation of two co-continuous networks (which can be separate or interconnected):

→ one organic (based on photopolymerized acrylates)

→ one inorganic (based on condensed M-OH groups from hydrolyzed metal alkoxides)

▪ composition design to control solvent evaporation, reactivity, printing, drying, debinding

and sintering

+ high versatility in terms of composition and microstructural development

+ structures with controlled (non stochastic) and hierarchical architectures
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