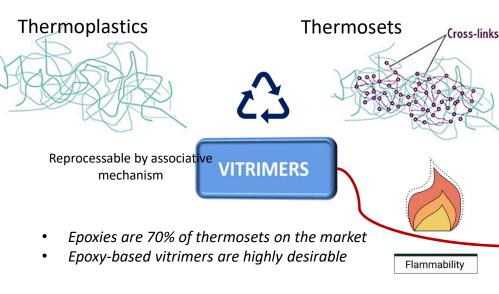
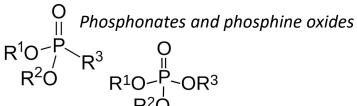
X Italian Sol-Gel Workshop

Padova 15-16 September 2025

Flame retardant and recyclable phosphine oxide epoxy based covalent adaptable networks containing sol gel derived mixed

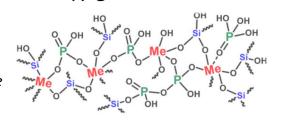
oxides as acid catalysts

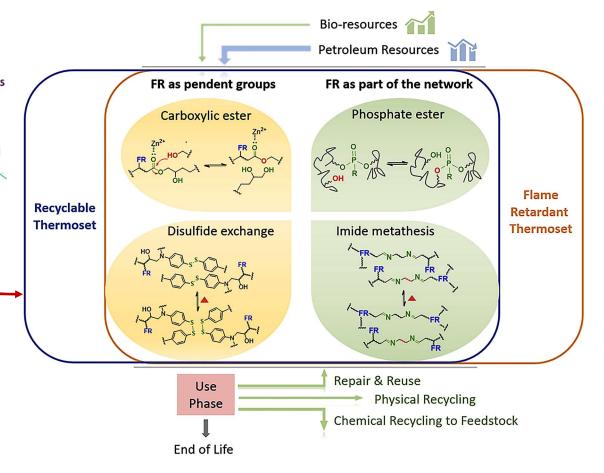

THE POLY BUTTON OF THE PARTY OF


Aurelio Bifulco, PhD Chem
University of Naples Federico II

V. Palumbo^{a, b}, W.W. Klingler^a, A. Bifulco^b, C. Imparato^b, S. Lehner^a, A. Aronne^b, S. Gaan^a

Laboratory for Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland b Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy aurelio.bifulco@unina.it





Via Sol-gel chemistry

- One-pot procedure
- Control
- High yield
- Low temperature

S.J. Demongeot et al., **Polym. Chem.** 2016, 7(27), 4486–4493 W.W. Klingler et al., **Compos. B. Eng.** 2023, 258, 110667

Limits of vitrimers based on transesterification:

- Sensitive toward the hydrolysis
- High reprocessing temperatures for low activation energies/au
- Zn(II) acetate and TBD usually needed (not stable at high temperatures)
- Only one function for the catalyst, also needed at high loadings

Synthesis of the mixed oxides - 2

Binary and ternary oxides:

- $Nb_2O_5-(P_2O_5)-SiO_2$ (SiNbP)
- $SiO_2-P_2O_5$ (SiP)
- SiO₂-Nb₂O₅ (SiNbP)

Green sol-gel synthesis route

Metal oxide and phosphorus-based active phases finely dispersed in high-surface area porous silica matrix

Modulation of acidity (Lewis/Brønsted acid sites) and nanostructure

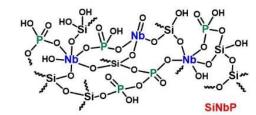
Catalytic activity in biomass conversion reactions (hydrolysis, dehydration, transesterification)

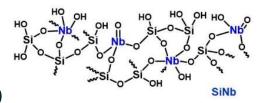
Ammonium niobium oxalate hydrate (ANO)

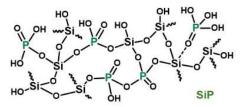
Water

TEOS (Tetraethyl orthosilicate Stirring 3 days

After 1 h, H₃PO₄ is added and the solution is stirred at room temperature until gelation

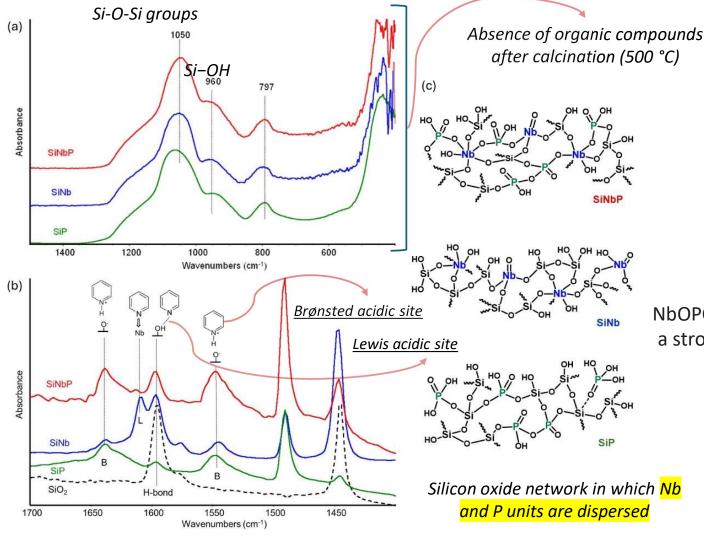

The acidity of ANO and H₃PO₄ promotes TEOS hydrolysis without the need for additional acid catalysts

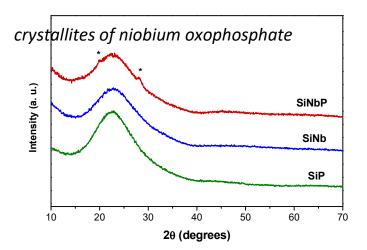

Clear homogeneous gels are obtained (3 days)


The gels are kept aging at room temperature (2 days)

Dried in air at 110 °C to white bulk xerogels

Ball milling and calcined in air at 500 °C for 1 h at the heating rate of 10 °C min⁻¹



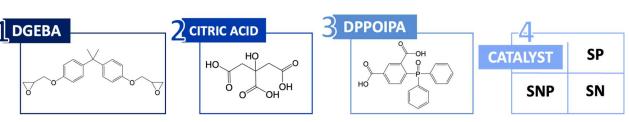

Amorphous structures (XRD)

Structural and acid properties of the mixed oxides - 2

A. Aronne et al., J. Sol-Gel Sci. Technol. 2007, 43(2), 193-204

Amorphous structure: absence of segregated Nb₂O₅ or P₂O₅ crystalline phases

NbOPO₄ is a well-known acidic solid characterized by a strong intrinsic Lewis/Brønsted acidity and a good thermal stability

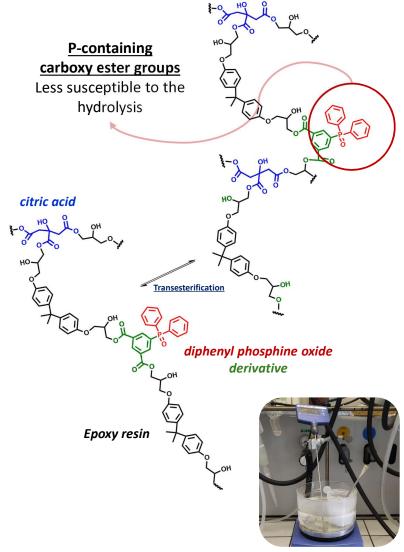

SiNbP: manly Brønsted acidity and weak Lewis acidity

SiNb: Brønsted and medium strength Lewis acidic sites

SiP: Brønsted acidity and weakly acidic silanol groups

Preparation of inherently recyclable and flame retardant epoxy-based vitrimers - 2

Sample	DGEBA (mol)	CA/DGEBA (mol/mol)	DPPOIPA/ DGEBA (mol/mol)	Catalyst (10 wt.% of precured resin)	Final P content (wt.%)
EV	1	0.67	-	-	-
EV-SN	1	0.67	-	SiNb	-
EV-SP	1	0.67	-	SiP	-
EV-SNP	1	0.67	-	SiNbP	-
EVP	1	0.40	0.40	-	2.0
EVP-SN	1	0.40	0.40	SiNb	1.8
EVP-SP	1	0.40	0.40	SiP	2.2
EVP-SNP	1	0.40	0.40	SiNbP	2.4


Mixing at 60°C

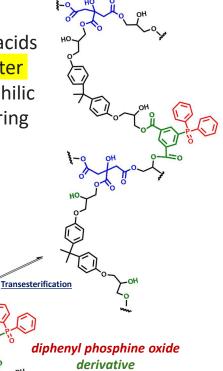
Curing 140°C 2h; 160°C 2h

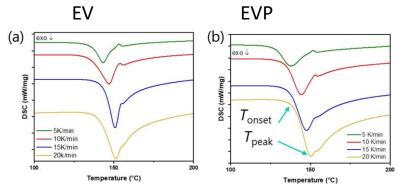
The nominal P content: 2.0 wt.%

DGEBA:CA:DPPOIPA = 1.0:0.4:0.4 (molar)

DGEBA:CA = 1:0.67 (molar)

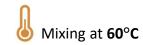
D. Montarnal et al., **Science** 2011, 334, 965


V. Palumbo et al., Sustain. Mater. Technol. 2025, 45, e01477


Formation of the dynamic crosslinked network - 2

DGEBA with carboxylic acids produces 2-hydroxyester chains through nucleophilic attack on the epoxide ring

Epoxy resin


citric acid

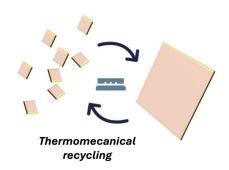
Exothermic peak of crosslinking reactions shifts to higher temperatures and grows in magnitude as the heating rate increases

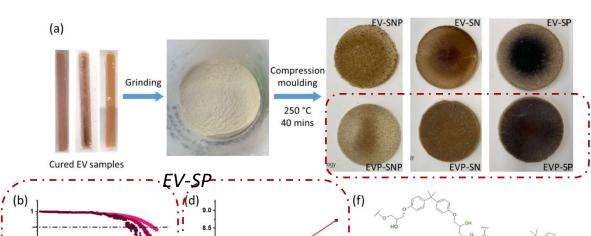
Model-free kinetic method: the reaction rate at constant conversion degree is simply a function of the temperature

Curing 140°C 2h; 160°C 2h

Better chemical affinity of DPPOIPA than CA The incorporation of DPPOIPA causes a significant drop (27%) in the E_a value with respect to EV reference sample

Mixed oxides appear effective in catalysing the esterification reactions, affording lower E_a (up to 36%) than the one of EVP


Sample	E _a (kJ mol ⁻¹)
EV	212
EVP	156
EVP-SN	131
EVP-SP	141
EVP-SNP	100


Reprocessability of the epoxy-based vitrimers - 3

The various samples have been thermomechanically reprocessed at 250 °C for maximal The pressure sequence was the same for each sample, going through the following steps: 0.5 tons, 4 tons, 10 tons, and 25 tons

Trans-esterification

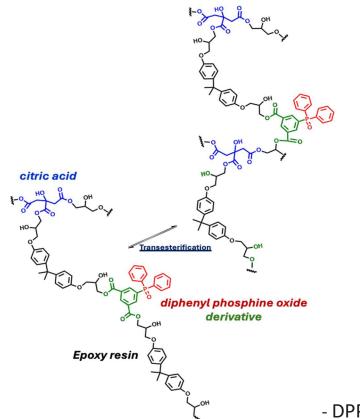
EVP_R

1000 / T (K-1)

1000 / T (K-1)

EVR-SP

0.01


The better reprocessability of EVP set demonstrates that the presence of the DPPOIPA units in the network positively affects its topological rearrangement by dynamic bond exchanges

Stress relaxation follows a stretched exponential model in a range of relaxation times, especially for **EV-SP** and **EVP-SP**

EV-SP (
$$E_a$$
 = 120.0 kJ/mol) / (240–280 °C)
EVP-SP (E_a = 108.7 kJ/mol) / (260–300 °C)

E_a is slightly higher compared to the values usually observed for Zn(OAc), or Sn(Oct),

Thermal analysis of the epoxy-based vitrimers - 3

Sample	Tg (°C)
EV	126
EV-SN	120
EV-SP	128
EV-SNP	131

Sample	Tg (°C) (original)	Tg (°C) (recycled)
EVP	120	-
EVP-SN	120	123
EVP-SP	122	124
EVP-SNP	99	101

DPPOIPA introduces bulky phenyl pendant groups into the polymer chains and cause a slight plasticizing effect

DPPOIPA

Phenyl rings of DPPOIPA negatively interfere by steric hindrance and with the establishment of hydrogen bond interactions

 DPPOIPA causes an increase in T_{5%}
 All mixed oxides lead to an increase in residue, even higher in presence of DPPOIPA

			Original		Recycled		
	Sample		T (°C)	Residue (wt.%)	T (°C)	Residue (wt.%)	
			T _{5%} (°C)	800 °C	T _{5%} (°C)	800 °C	
	EV		251	12	-	-	
	EVP		<mark>337</mark>	<mark>12</mark>	-	-	
	EVP	-SN	315	25	340	[26]	
	EVP	-SP	318	24	322	30	
	EVP	-SNP	284	23	306	27	

Flammability of the epoxy-based vitrimers - 3

EV-SP exhibited no dripping phenomena, probably due to the acidic characteristics of SiP, which are also beneficial for reprocessing features

Huge formation of char during the tests → acid catalysts dehydrate the polymer matrix

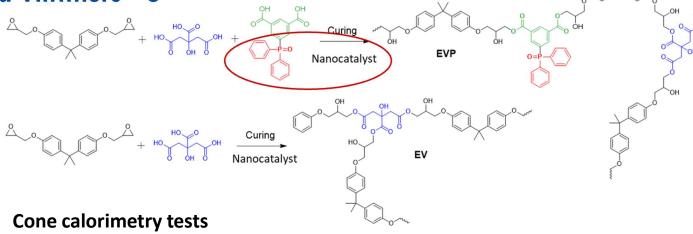
White smoke releasing during the tests → phosphine oxide units exert an inhibition effect

EVP with all the silica-based solid acids: no-dripping V-0 class

Fire behaviour of the epoxy-based vitrimers - 3

The acidic characteristics of the catalysts

Promote the charring of the polymer

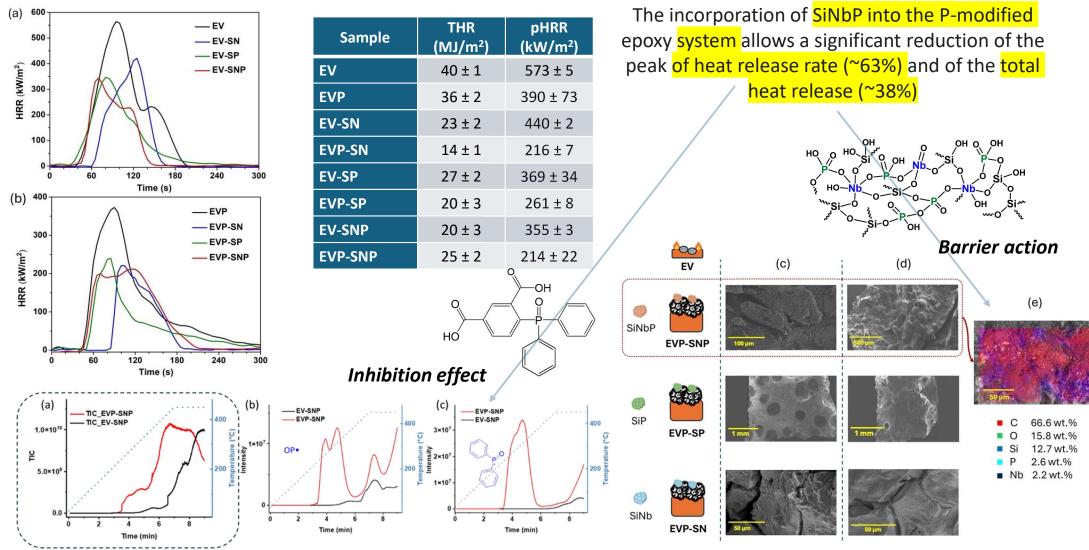

matrix, leading to the production of more

carbonaceous material

The addition of SiNbP into EVP
Decrease of the pHRR and THR by around 36% and 24%, respectively, together with an increase of the residue up to 5.1%

PCFC

Sample	THR (kJ/g)	pHRR (W/g)	Residue (wt.%)	
EV	26 ± 0.7	293 ± 47	1.1 ± 0.1	
EVP	25 ± 0.7	376 ± 24	1.4 ± 0.3	
EV-SN	21 ± 0.3	298 ± 2	1.9 ± 0.1	
EVP-SN	18 ± 0.1	291 ± 7	3.7 ± 0.1	(
EV-SP	20 ± 0.8	302 ± 15	2.0 ± 0.2	
EVP-SP	18 ± 0.1	303 ± 3	3.6 ± 0.1	4
EV-SNP	25 ± 4	247 ± 3	1.4 ± 0.6	
EVP-SNP	19 ± 0.3	243 ± 22	5.1 ± 0.5	4

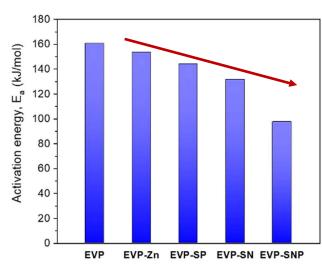


Sample	TTI	CO/CO ₂		TSR
	(s)	(-)		(m²/m²)
EV	31 ± 4	0.05	4	1755 ± 9
EVP	36 ± 1	0.14	`	2357 ± 41
EV-SN	75 ± 20	0.10		828 ± 17
EVP-SN	95 ± 12	0.33	4	993 ± 29
EV-SP	41 ± 9	0.08		927 ± 46
EVP-SP	54 ± 3	0.22	4	877 ± 16
EV-SNP	52 ± 4	0.08	7	777 ± 45
EVP-SNP	53 ± 1	0.37	4	1306 ± 19

Mixed oxides in EV and EVP cause a notable decrease in the total smoke release (up to 62%)

The <u>presence of DPPOIPA</u> leads to a remarkable increase (~70%) in the <u>time to ignition</u> and <u>CO/CO₂</u> ratio

Flame retardant mechanisms - 3



Performance comparison between epoxy-based vitrimers obtained by using Zn(II) acetate

or mixed oxides catalysts

Sample	E _a (kJ mol ⁻¹)
EVP	156
EVP-Zn	<mark>154</mark>
EVP-SN	131
EVP-SP	141
EVP-SNP	100

Original		Recycled	
T _{5%}	Tg	T _{5%}	Tg
(°C)	(°C)	(°C)	(°C)
337	120	-	-
<mark>230</mark>	<mark>123</mark>	<mark>270</mark>	<mark>82</mark>
315	120	340	123
318	122	322	124
284	99	306	101

Esterification:	crosslinking
-3tci ilicationi.	CIOSSIIIIKIIIE

	Thermal stability	Tg		Thermal stability	Tg
SiNbPSiPSiNbP	High	Unvaried		High	Unvaried
Zn(II) acetate	Low	Unvaried	Thermomecanical recycling	Low	Low

Materials Science and Technology

Sustainable Materials and Technologies 45 (2025) e01477

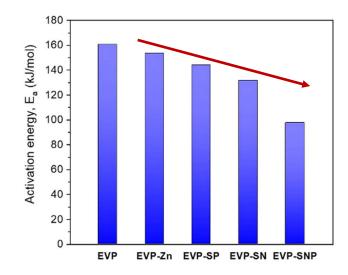
Contents lists available at ScienceDirect

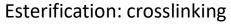
Sustainable Materials and Technologies

journal homepage: www.elsevier.com/locate/susmat

EVP
EVP-Zn
EVP-SN
EVP-SP
EVP-SNP

Sample


UL 94/drip	TTI (s)	pHRR (kW/m²)	TSR (m²/m²)	CO/CO ₂	
V-0/NO	36 ± 1	390 ± 73	2357 ± 41	0.14	
V-1/NO	30 ± 12	320 ± 21	1523 ± 162	0.22	
V-0/NO	95 ± 12	216 ± 7	993 ± 29	0.33	
V-0/NO	54 ± 3	261 ± 8	877 ± 16	0.22	
V-0/NO	53 ± 1	214 ± 22	1306 ± 19	0.37	



Catalytic effect of mixed oxides in phosphine oxide epoxy-based covalent adaptable networks: Recyclability, fire protection, and smoke suppression*

Valeria Palumbo ^{a,b}, Wenyu Wu Klingler ^{a,*}, Nikita Drigo ^a, Ton Markaj ^a, Aurelio Bifulco ^{b,*}, Claudio Imparato b, Alex Imboden a, Sandro Lehner a, Alessia Arpaia b, Elisabetta Finocchio c, Antonio Aronne^b, Sabyasachi Gaan^{a,*}

+ 1 master thesis in sol-gel & flame retardancy

	Thermal stability	Tg		Thermal stability	Tg
SiNbPSiPSiNbP	High	Unvaried		High	Unvaried
Zn(II) acetate	Low	Unvaried	Thermomecanical recycling	Low	Low

^{*} Laboratory for Advanced Fibers, Enga Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldarasse 5, 9014 St. Gallen, Switzerland * Department of Chemical, Materials and Production Engineering (DiGMePI), University of Naglac Federica II, Plc Tecchio 90, 80125 Naglac, Italy * Department of Chemical Advancemental Engineering, University of Geno, Val Opera Pla 15, 16145 Genos, Italy 1, 16145 Genos, Italy

Conclusions - 4

Polyester vitrimers are formed by crosslinking epoxy resin with citric acid and diphenyl phosphine oxide derivative (DPPOIPA) and using sol-gel derived solid acid catalysts (SiP, SiNb, SiNbP)

The chemistry of these vitrimers allows for their reprocessing by associative mechanism of transesterification linkages. Reprocessed samples show unvaried T_g compared to the original materials, and especially SiP oxide causes a reduction of curing activation energy and promotes thermomechanical recycling

This behaviour is ascribed to the significant surface acidity, mainly provided by Brønsted acid sites, driving the heat-triggered network rearrangement in vitrimers

All the DPPOIPA-containing vitrimers with acid solids are self-extinguishing, with no dripping V-0 rating in the UL 94 vertical burning test, despite the low P content (~2 wt.%)

The incorporation of SiNbP into the P-modified epoxy system allows a significant reduction of the peak of heat release rate (~63%) and of the total heat release (~38%)

For all the formulations containing an acid catalyst and DPPOIPA, the effect in the condensed phase takes place in synergy with an inhibition effect exerted by phosphorus radicals in the gas phase

Notwithstanding the gas phase action exerted by DPPOIPA, all the mixed oxides notably dwindle the TSR (up to 62%) and SEA (up to 71%) parameters during the CC tests

Future outlooks

Self-extinguishing flame retardant recyclable thermosets with very low smoke emissions Proper tuning of the surface functionalities of such catalysts may improve fire resistance and sustainable features of final products 14

X Italian Sol-Gel Workshop

ECR Network

15

