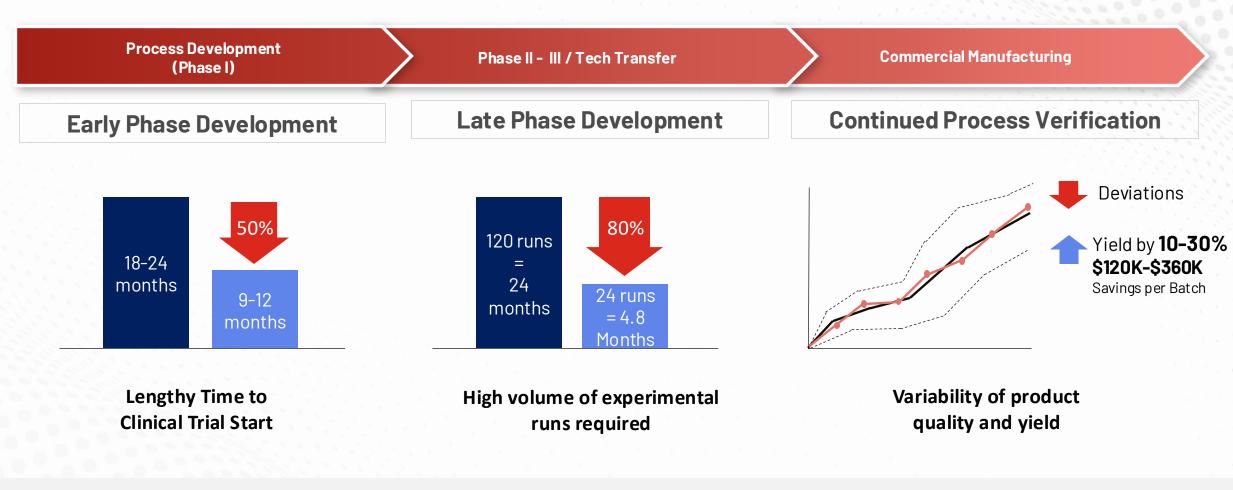


Transforming Process Development with Al

Bayesian hybrid models as enablers for ML-driven digital twins in biopharma productions

13 February 2025, Alessandro Butté, CEO and Co-founder, a.butte@datahow.ch

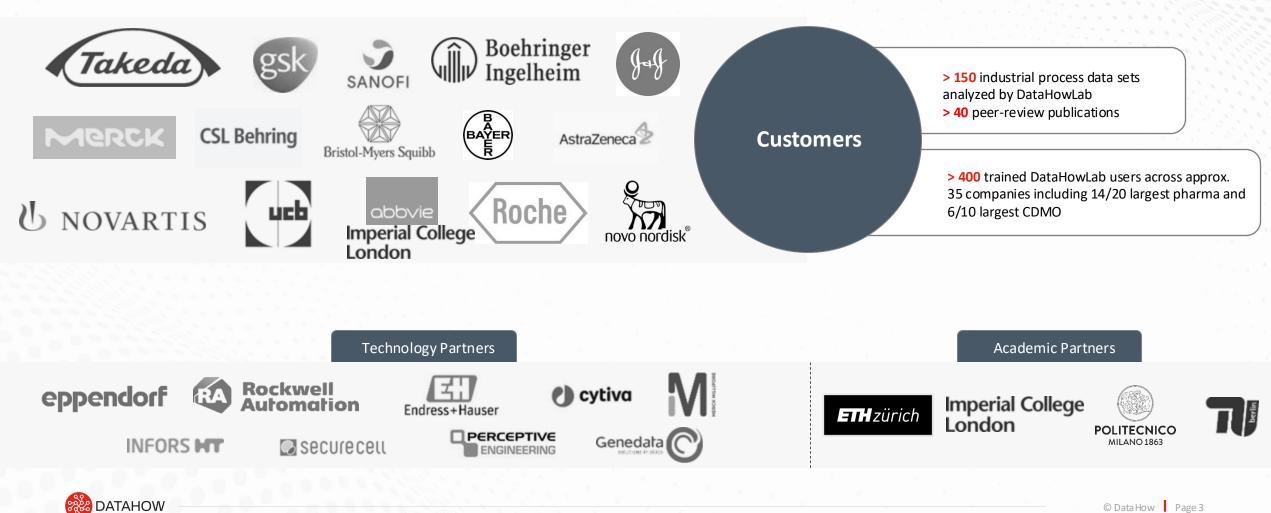
What is it achievable with AI-Enabled Digital Twins?



The cost of delays in upstream scale-up can run into hundreds of thousands of dollars a day

Trusted and deployed by many key industry players

Customers & Partners: A result of more than 10 years of Thought Leadership and First Mover Collaborations



Who is DataHow?

Some numbers

2017

Incorporation

Series A investment

ca. 40

Team Members (Zurich – Milan – Lisbon – Philadelphia)

DATAHOW

Customer Regions

DataHow leadership: domain experts & innovators in process modelling

Meet the team

Dr. Alessandro Butté Co-founder & CEO

M.Sc. Chemical Engineering PhD Chemical Engineering International Executive MBA 20 years industrial experience Co-author of over 100 papers Member of Italian Academy of Technology and Engineering

Dr. Michael Sokolov Co-founder & COO

M.Sc. Chemical Engineering PhD Bioengineering International Executive MBA Expert in process development with more than 30 papers

Dr. Fabian Feidl Co-founder & CTO

M.Sc. Mol. Biotechnology PhD Bioengineering International Executive MBA Expert in process automation

Kevin Healy Chief Revenue Officer

M.Sc. Chemical Engineering >25 years industrial experience Expert in Digital Industry Software

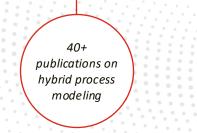
Mark Powell Chief Commercial Officer

BSc Business Administration Commercial Finance (GMCA) International Executive MBA > 10 years industrial experience

Prof. Massimo Morbidelli Co-founder

Full professor Politecnico Milano ('86-'95) and ETH Zurich ('96-'19) Co-author of over 650 papers Member of the Italian Academy of Science

ACADEMIC LEADERS IN PROCESSES MODELING DEPLOYING DATAHOW'S PRODUCTS & TECHNOLOGY ACROSS 20+ BIG-PHARMA CUSTOMERS & HUNDREDS OF MODELED USP PROCESS DATA SETS

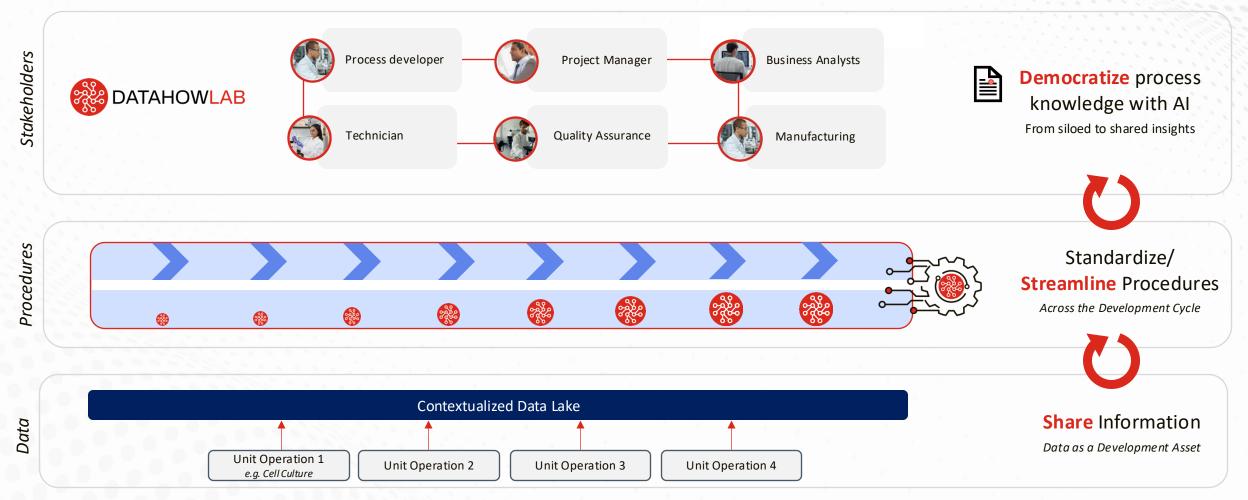


DATAHOW

Enabling process optimization across a range of cases and scenarios Unparalleled experience and industry process knowledge & best practice

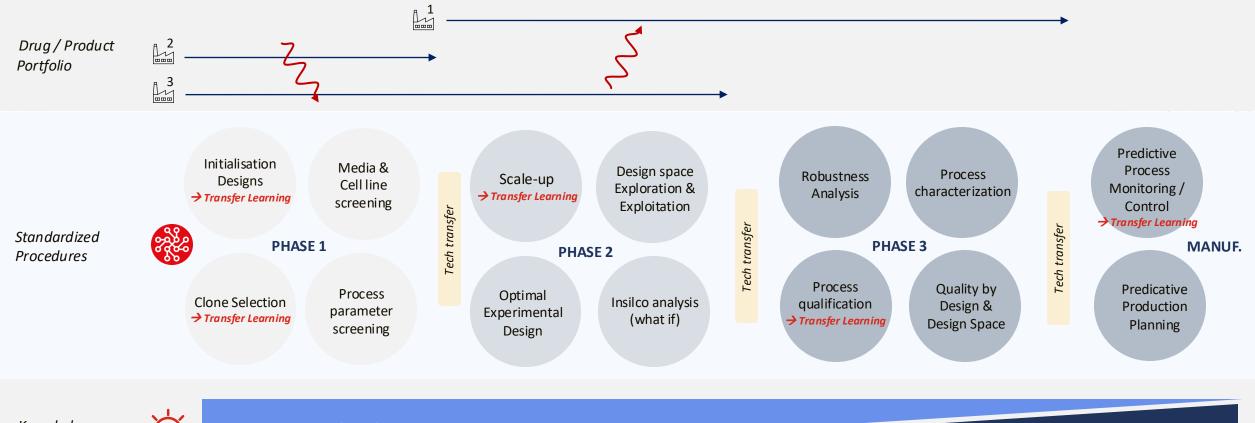
Change the paradigm: from Expert Models to Standardized Solutions

Enabling consistent outcomes, performance & knowledge management



Digital Platform Processes across Full Product Lifecycle

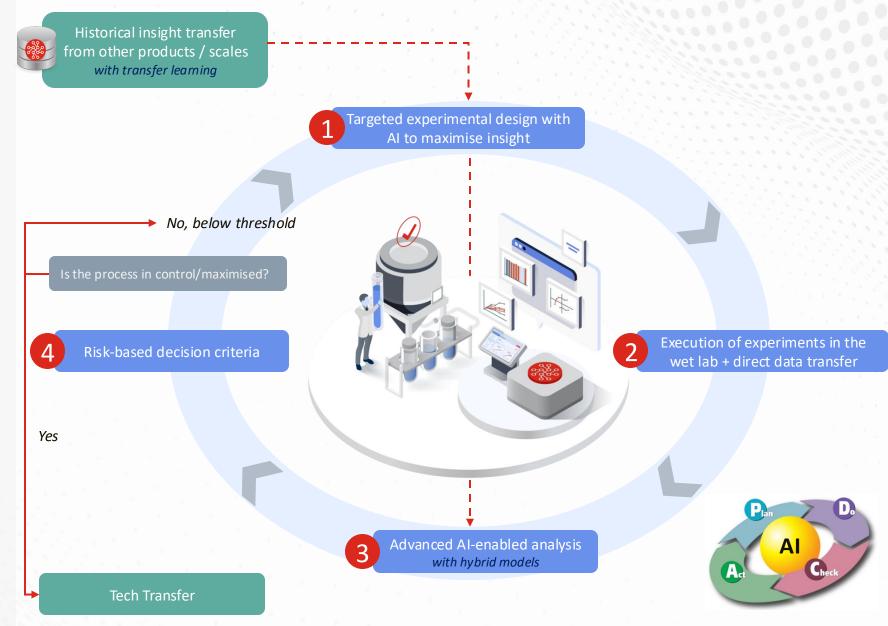
Systematic, efficient development of consistently productive processes



Operational Risk

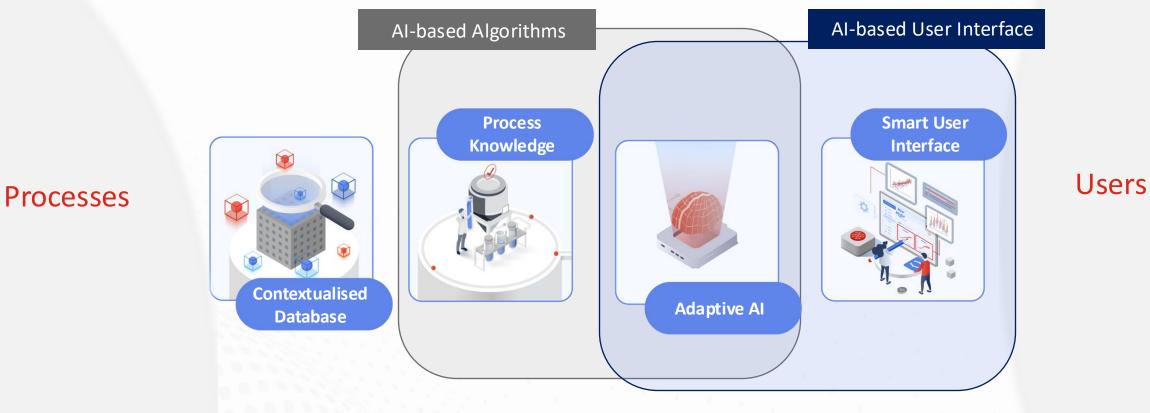
Process Knowledge

Digital platform processes Delivering consistent outcomes, fast



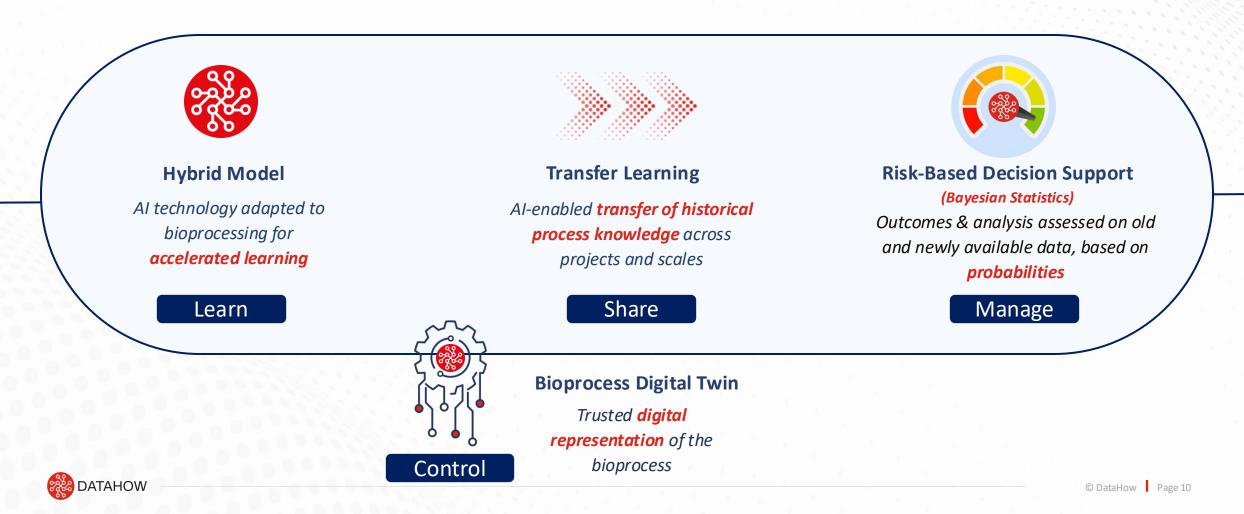
Our Methodology Pillars

Adaptive Algorithms and Smart user interface. Hand in Hand.



Core Algorithms

AI-Technologies enabling advanced analytics & digital development

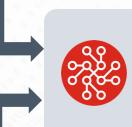


DataHow Hybrid Models

But what are they and how do they help?

Mechanistic: for what we know about the process

Mechanistic models code known engineering and process knowledge. They are not able to fully describe complex biological systems.



Hybrid models: best of both worlds

Explain what we know and use data to understand that which is unknown.

Data-driven (AI): for what we don't know

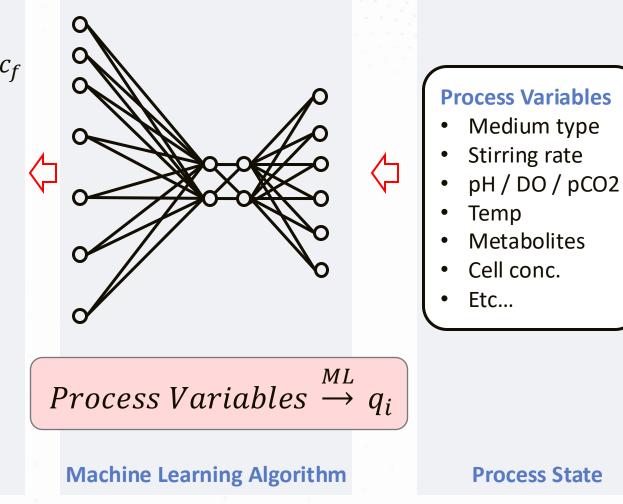
Machine learning models which determine relationships and patterns from raw process data to help explain complex relationships.

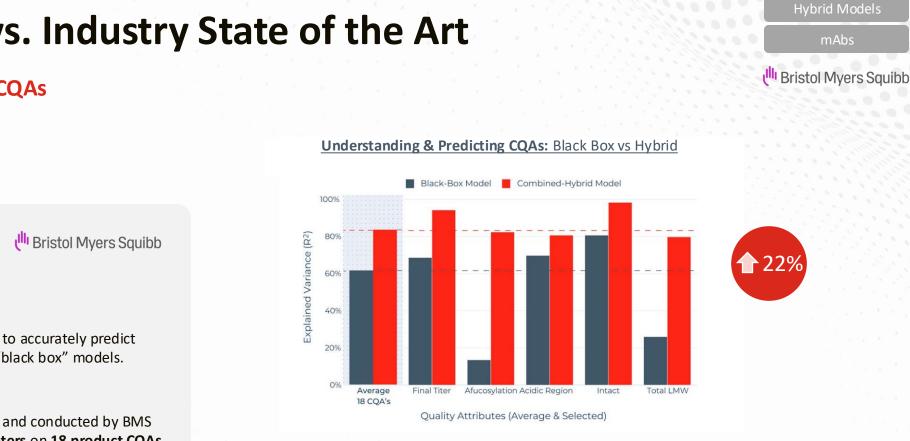
IMPACT: Better insight to develop better processes, faster

- → Better prediction and control of quality attributes
- → Increased yields and process performance
- → Accelerated learning and increased operational efficiency

Hybrid Modeling of Upstream Bioprocesses in a Nutshell

dVCD $\frac{dt}{dt} = \mu \cdot VCD - F_b \cdot VCD$ $\frac{dGlc}{dt} = -q_{Glc} \cdot VCD - (F_b + F_p) \cdot VCD + F \cdot Glc_f$ $\frac{dGln}{dt} = -q_{Gln} \cdot VCD - (F_b + F_p) \cdot Gln$ dAmm $\frac{dt}{dt} = q_{Amm} \cdot VCD - (F_b + F_p) \cdot Amm$ $\frac{dLac}{dt} = q_{Lac} \quad \cdot VCD - (F_b + F_p) \cdot Lac$ $\frac{dTiter}{dt} = q_{titer} \cdot VCD - (F_b + F_p) \cdot Titer$ VCD **Perfusion / Bleed** Acc. Rates Feed





Hybrid Models vs. Industry State of the Art

Understanding & Predicting CQAs

The **Project**:

Evaluate the ability of hybrid process models to accurately predict CQAs compared to industry state-of the-art "black box" models.

The Challenge:

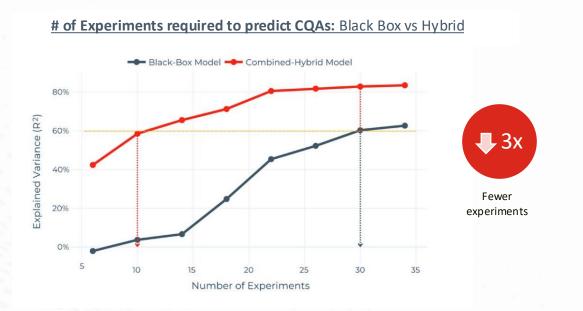
48 (5 Liter scale) experiments were designed and conducted by BMS to evaluate the impact of 12 process parameters on 18 product CQAs.

- On average, hybrid models explained CQA variance +22% better than black box
- Even after 34 experiments, black-box models were unable to reliably predict 5 of • the 18 CQAs (highlighted: Afucosylation / Total LMW)
- For some CQAs, the predictive ability of hybrid models was approaching 100% (highlighted: Titer / Intact)

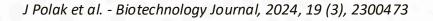
Case Study

Hybrid Models more effective for development

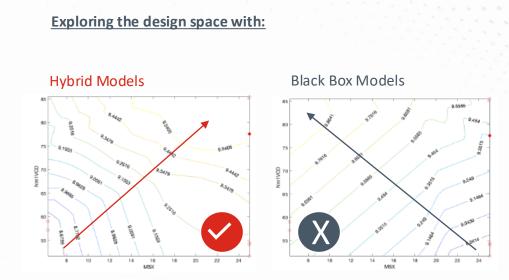
Models and analytics used today not supporting development objectives



- Black box models needed **30 experiments** before they could understand the CQA / process parameter interrelationships and reliably predict CQA values
- Hybrid models only required 10 experiments to reach the same level of predictive accuracy



DATAHOW



- Hybrid models accurately understood the complex interrelationships to suggest areas of further exploration
- Black Box models struggle to understand complex dynamics. They suggest further exploration in the wrong direction

Case Study

Hybrid Models

mAbs

Transfer Learning

Leveraging historical data to inform & accerelate novel developments

What is Transfer Learning?

- For products with a degree of similarity, historical insights can be used to inform novel developments using a meta-learning approach
- These insights can be used to design more targeted "calibration" experiments to accelerate early learning vs. starting from scratc

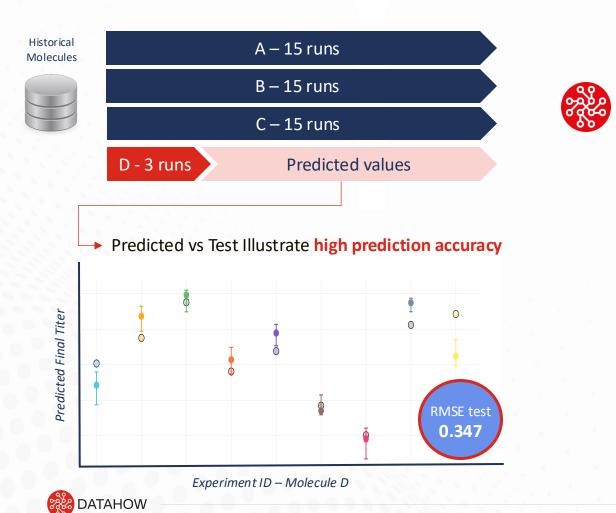
Case Study

Transfer Learning

mAbs

Accelerated Process Design via Transfer Learning

Predicting molecule specific behaviour (Molecule - D) with only 3 runs



Model trained on 15 runs of molecules A, B & C + 3 runs of D

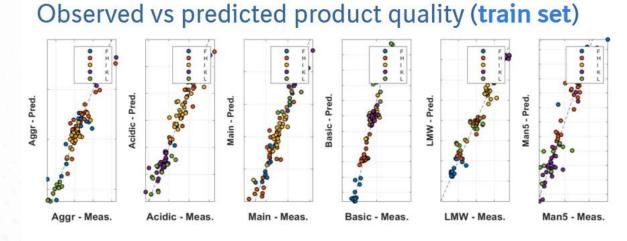
- The behaviour of molecule D can be learned effectively from only 3 runs of D and transferred knowledge from molecules A-C.
- Transfer learning can significantly accelerate clone selection process
- The trained model could suggest optimal clone choice & process design

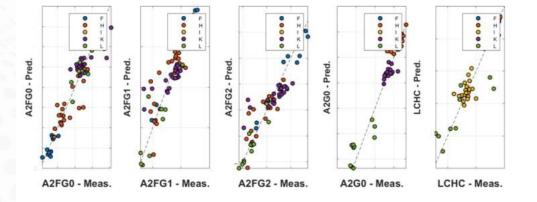
Transfer learning can also be applied across scales

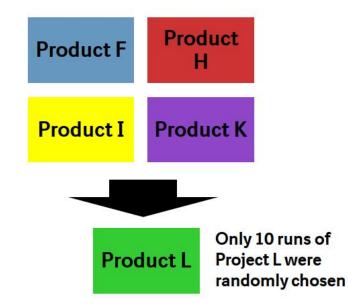
We have been able to learn and predict large-scale titers with no or only 1 mid-scale run before continuing to pilot scale.

Example: Transfer knowledge for faster process chatacterization

Generic model & transfer learning





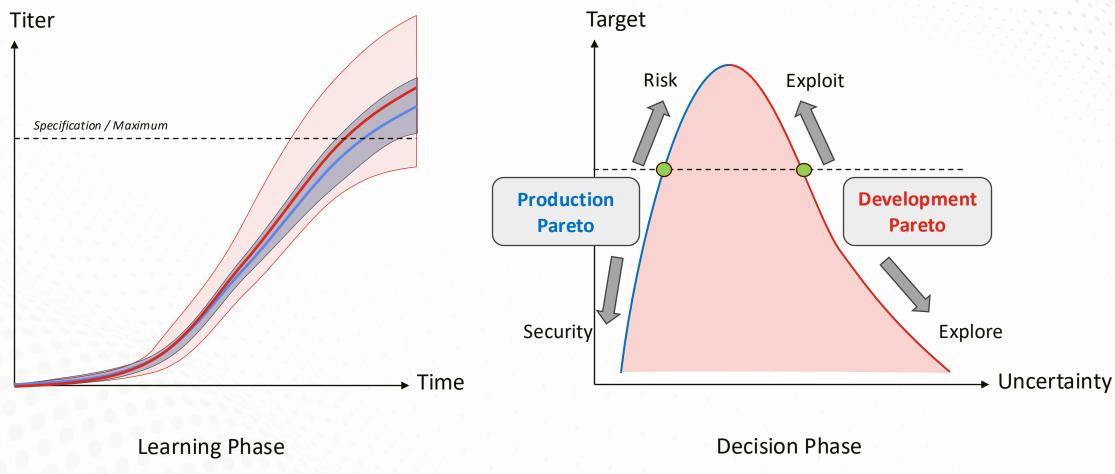


Transfer learning \rightarrow a generic model allows to use cross-project information as a starting point for project-specific model development

Transfer Learning

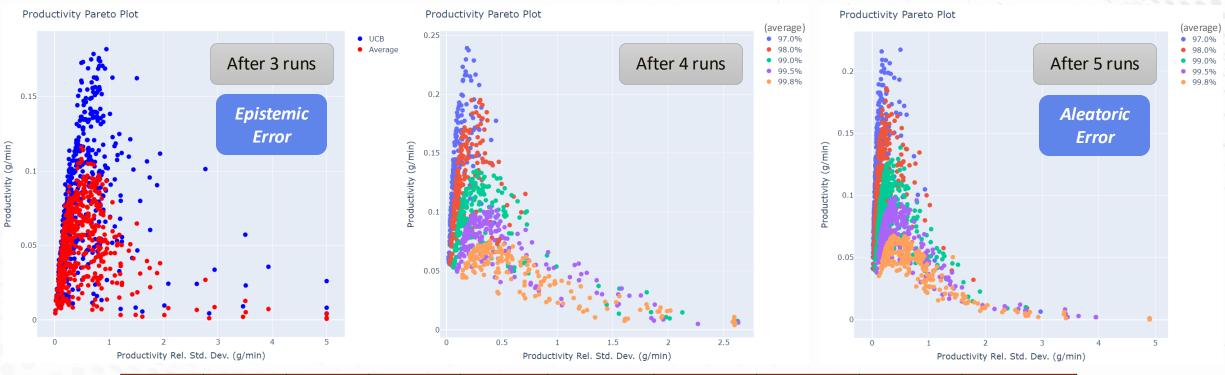
Pareto Bayesian Optimization

How to manage uncertainty to optimize decisions



Hybrid Models for 3-Component Gradient Separation

Design first experiment using the Pareto plot



C1feed	C2feed	C3feed	FlowRate	CVFeed	CVGradient	C1feedTrue	C2feedTrue	C3feedTrue	FlowRateTrue
0.05	1	0.15	1.00	3.00	40.00	0.05	1.08	0.15	1.00
0.1	1	0.05	1.50	1.00	30.00	0.10	0.94	0.05	1.50
0.15	1	0.1	0.50	2.00	20.00	0.15	1.14	0.10	0.50
0.15	1	0.15	1.65	4.26	32.27	0.15	0.97	0.14	1.66
0.15	1	0.15	1.90	4.01	33.32	0.15	0.94	0.16	1.89

Transfer Learning

Enantiomer Continuous Purification by SMB

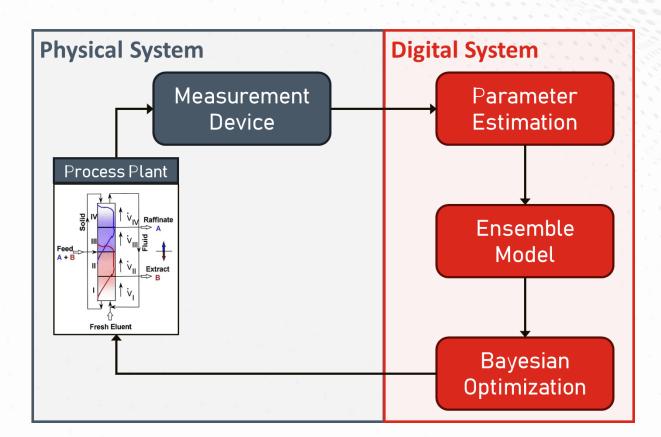
Real time learning and optimization of a 6 column SMB process

The Project:

Create a robust process controller for SMB enantiomer separation

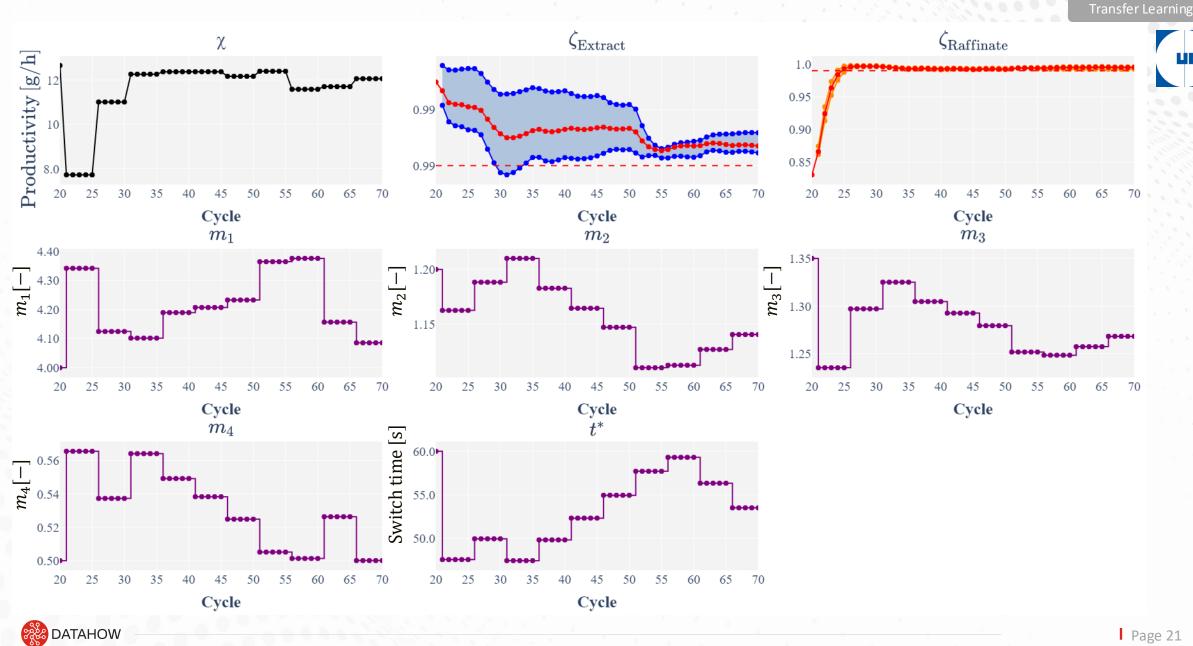
The Challenge:

Optimize process conditions in real time in the presence of significant column degradation and variability, while minimizing batch experiments



- **Objective**: productivity in 5 cycles
- **Constraint 1**: purity on extract and raffinate > 99%
- **Constraint 2**: yield > 99.5%

Digital Twin for 50 Cycles using UV + Average Purities



Case Study

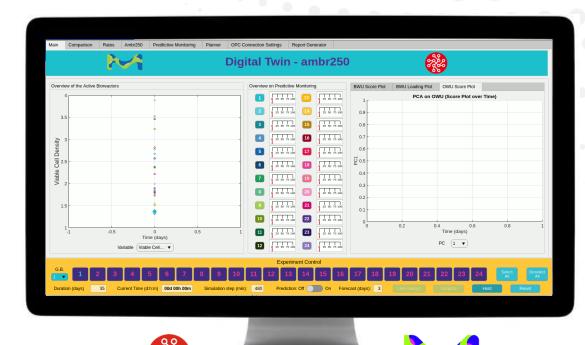
Digital Twins

Merck

Digital Twins for Ambr[®] Systems

- Real-time control of 24 parallel ambr250 bioreactors in perfusion mode with a digital twin
- Hybrid models from DataHowLab connected to device forecasted future behavior of all runs as basis for feed-forward predictive alarms and controls
- Active learning during run as basis for real-time process optimization and efficient learning in parallel system

A hybrid model is the best abstracted understanding of a process and how it will perform under varying conditions - your bioprocess digital twin



Advanced AI-Analytical Technologies working in the Background

Democratizing access and usability of advanced data-science for non-experts

Advanced Technology Core

- Hybrid Models
- Transfer Learning
- Bayesian Statistics
- Digital Twin

Easy Application

- User Friendly UX
- No-code analysis
- Structured methodology
- Guided workflows
- Automations
- Decision support

Make a model in minutes with DataHowLab's guided workflows

Gateway to model-based tasks

This step has been developed to make model development simple for non-data scientists.

The goal: access insights!

While providing context and traceability to key stakeholders

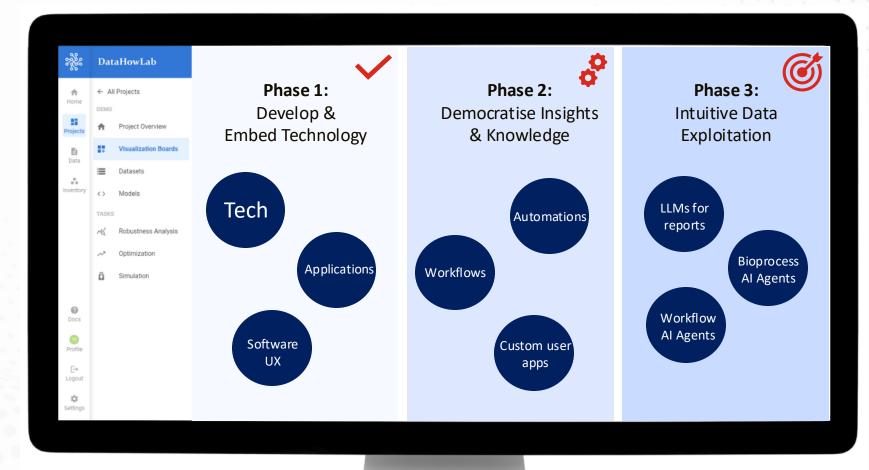
- For the process scientist: model evaluation compare and select the best model for the project.
- For the FDA: model versioning what has the model been trained on?
- For the data scientists: model logbook what is behind the model?

		Supported by automa	ations and tutorials	Ì							
	Select Model	Select Dataset	Select Variables	Select Features							
Home Projects	DataHowLab ← All Projects DEMO ↑ Project Overview	Projects / Demo / Models / Train new model New Model Model parameters Verview Z VARIABLES W VARIABLES FEEDS/FLOWS	Select variables	← BACK TRAIN NEW /40DE							
Data ••• Inventory	Visualization Boards Datasets Amodels TASKS Add Robustness Analysis	Visualization boards Datasets Model #4 Model #4 Model #4 training Validation TASKS Validation TASKS Model second tes									
© Docs	✓ Optimization ☐ Simulation	Parameter Value	s': 5, 'schemaKey'; 'KFold CV')								
© Profile ↓ Logout \$ettings		Dataset Tabularized dataset Runs (25) NRIL-Exp-01 NRIL-Exp-04 NRIL-Exp-05 NRIL-Exp-05 NRIL-Exp-07 NRIL-Exp-19 NRIL-Exp-20 RRIL-Exp-21 RRIL-Exp-22 RRIL-Exp-23 Variables (18)		-Ep-13 NELED-14 NELED-15 NELED-16 NELED-17							

DATAHOW

The bioprocessing software for our AI future

DataHowLab development vision following the AI megatrend



Alessandro Butté – CEO and Co-founder of DataHow AG <u>a.butte@datahow.ch</u> – <u>www.datahow.ch</u>